Chapter 4

Ranking-based evaluation of
recommender systems:

experimental designs and biases

There is an increasing consensus in the Recommender Systems community that the
dominant error-based evaluation metrics are insufficient, and to some extent inade-
quate, to properly assess the practical effectiveness of recommendations. Seeking to
evaluate recommendation rankings — which largely determine the effective accuracy
in matching user needs — rather than predicted rating values, Information Retrieval
metrics have started to be applied to evaluate recommender systems.

In this chapter we analyse the main issues and potential divergences in the appli-
cation of Information Retrieval methodologies on recommender system evaluation,
and provide a systematic characterisation of experimental design alternatives for this
adaptation. We lay out an experimental configuration framework upon which we
identify and analyse specific statistical biases arising in the adaptation of Information
Retrieval metrics to recommendation tasks, which considerably distort the empirical
measurements, hindering the interpretation and comparison of results across experi-
ments. We propose two experimental design approaches that effectively neutralise
such biases to a large extent. We support our findings and proposals through both
analytical and empirical evidence.

We start the chapter by introducing the problem of (un)biased evaluation in re-
commender systems. The reminder of the chapter follows by revisiting the principles
and assumptions underlying the Information Retrieval evaluation methodology: the
Cranfield paradigm (Section 4.2). After that, in Section 4.3 we elaborate a formal
synthesis of the main approaches to the application of Information Retrieval metrics
to recommendation. In Sections 4.4 and 4.5 we analyse, respectively, the sparsity and
popularity biases of Information Retrieval metrics on recommendation tasks. We
present and evaluate two approaches to avoid these biases in Section 4.6,and end

with some conclusions in Section 4.7.
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4.1 Introduction

There seems to be a raising awareness in the Recommender Systems (RS) community
that important — or even central — open questions remain to be addressed concerning
the evaluation of recommender systems. As we mentioned in the previous chapter,
the error in predicting held-out user ratings has been by far the dominant offline
evaluation methodology in the RS literature (Breese et al., 1998; Herlocker et al.,
2004). The limitations of this approach are increasingly evident, and have been exten-
sively pointed out (Cremonesi et al., 2010). The prediction error has been found to
be far from enough or even adequate to assess the practical effectiveness of a re-
commender system in matching user needs. The end users of recommendations re-
ceive lists of items rather than rating values, whereby recommendation accuracy met-
rics — as surrogates of the evaluated task — should target the quality of the item selec-
tion and ranking, rather than the numeric system scores that determine this selection.

For this reason, researchers are turning towards metrics and methodologies from
the Information Retrieval (IR) field (Barbieri et al., 2011; Cremonesi et al., 2010; Her-
locker et al., 2004), where ranking evaluation has been studied and standardised for
decades. Yet, gaps remain between the methodological formalisation of tasks in both
fields, which result in divergences in the adoption of IR methodologies, hindering the
interpretation and comparability of empirical observations by different authors. The
use of IR evaluation techniques involves the adoption of the Cranfield paradigm
(Voorhees and Harman, 2005), and common metrics such as precision, mean average
precision (MAP), and normalised Discounted Cumulative Gain (nDCG) (Baeza-
Yates and Ribeiro-Neto, 2011). Given the natural fit of top-n recommendation in an
IR task scheme, the adoption of IR methodologies would seem straightforward.
However, recommendation tasks, settings, and available datasets for offline evalua-
tion involve subtle differences with respect to the common IR settings and experi-
mental assumptions, which result in substantial biases to the effectiveness measure-
ments that may distort the empiric observations and hinder comparison across sys-
tems and experiments.

Furthermore, how to measure the performance of a recommender system is a key
issue in our research. The variability in the experimental configurations, and the ob-
served statistical biases of the evaluation methodologies should be well understood,
since we aim to predict the performance of a system. We should avoid the situation
where a metric shows some source of noise together with the recommender’s quality,
since then a predictor capturing only that noise would appear as an (equivocal) effec-
tive performance predictor.

Taking up from prior studies on the matter (Cremonesi et al., 2010; Herlocker
et al., 2004; Shani and Gunawardana, 2011; Steck, 2011), we revisit the methodologi-

cal assumptions underlying IR metrics, and analyse the differences between Recom-
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mender Systems and Information Retrieval evaluation settings and their implications.
Upon this, we identify two sources of bias in IR metrics on recommender systems:
data sparsity and item popularity. We characterise and study the effect of these two
factors both analytically and empirically. We show that the value range of common
IR metrics is determined by the density of the available user preference information,
to such an extent that the measured values per se are not meaningful, except for the
purpose of comparison within a specific experiment. Furthermore, we show that the
distribution of ratings among items has a drastic effect on how different algorithms
compare to each other. Finally, we propose and analyse two approaches to mitigate
popularity biases on the measured ranking quality, providing theoretical and empiri-

cal evidence of their effectiveness.

4.2 Cranfield paradigm for recommendation

Information Retrieval evaluation methodologies have been designed, studied, and
refined over the years under the so-called Cranfield paradigm (van Rijsbergen, 1989;
Voorhees, 2002b). In the Cranfield paradigm, as e.g. typically applied in the TREC
campaigns (Voorhees and Harman, 2005), information retrieval systems are evaluated
on a dataset comprising a set of documents, a set of queries — referred to as 7gpzs and
consisting of a description or representation of user information needs —, and a set of
relevance judgments by human assessors — referred to as ground truth. The assessors
manually inspect queries and documents, and decide whether each document is rele-
vant or not for a query. Theoretically, each query-document pair should be assessed
for relevance, which, for thousands or millions of documents, is obviously unfeasi-
ble. Therefore, a so-called pooling approximation is applied, in which the assessors
actually inspect and judge just a subset of the document collection, consisting of the
union of the top-n documents returned by a set of systems for each query. These
systems for pooling are commonly the ones to be evaluated and compared, and n is
called the pooling depth, typically ranging around 100 documents. While this procedure
obviously misses some relevant documents, it has been observed that the degree of
incompleteness is reasonably small, and the missing relevance does not alter the em-
piric observations significantly, at least up to some ratio between the pooling depth
and the collection size (Buckley et al., 2007).

Whereas in a search system users may enter multiple queries, the recommenda-
tion task — in its classic formulation — typically considers a single “user need” per
user, that is, a user has a set of cohesive preferences which defines her main interests.
In this view a natural fit of recommendation in the Cranfield paradigm would take
users — as an abstract construct — as the equivalent of queries in ad-hoc retrieval (the
user need to be satisfied), and items as equivalent to documents (the objects to be

retrieved and ranked), summarised in Table 4.1. A first obvious difference is that
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Task element TREC ad-hoc retrieval task | Recommendation task

Information need expression | Topic (query and description) | User profile

All documents in the collection | Target item set

Candidate answers ) One or more per user,
Same for all queries .
commonly different

Document data available as Training ratings,

. Document content .
system input item features
Relevance Topical, objective Personalised, subjective
Ground truth Relevance judgments Test ratings
Relevance assessment Editorial assessors End users
Relevance knowledge Reasonably complete Highly incomplete
coverage (pooling) (inherently to task)

Table 4.1. Fitting the recommendation task in the Cranfield IR evaluation paradigm

queries are explicit representations of specific information needs, whereas in the rec-
ommendation setting, user profile records are a global and implicit representation of
what the user may need or like. Still, the query-user mapping is valid, inasmuch as
user profiles may rightfully fit in the IR scheme as “vague queries.”

The definition of ground truth is less straightforward. User ratings for items, as
available in common recommendation datasets, are indeed relevance judgments of
items for user needs. However, many recommendation algorithms (chiefly, collabora-
tive filtering methods) require these “relevance judgments” as input to compute rec-
ommendations. The rating data withholding evaluation approach, pervasive in RS
research, naturally fits here: some test ratings can be held out as ground truth and the
rest be left as training input for the systems. Differently from TREC, here the “que-
ries” and the relevance assessments are both entered by the same people: the end-
users. Furthermore, how much data are taken for training and for ground truth is left
open to the experiment designers, thus adding a free variable to be watched over as it
significantly impacts the measurements.

On the other hand, whereas in the IR setting all the documents in the collection
are candidate answers for all queries, the set of target items on which recommender
systems are tested for each user need not be necessarily the same. As already de-
scribed in the previous chapter, in general, the items with a test rating are included in
the candidate set for the raters, though not necessarily in a single run (Cremonesi
et al., 2010). Moreover, it is common to select further non-rated target items, but not
necessarily all the items (Bellogin et al., 2011a). Furthermore, the items rated by a
user in the training set are generally excluded from the recommendation to this user.
The way these options are configured has a drastic effect on the resulting measure-
ments, with variations in orders of magnitude (Bellogin et al., 2011a).

In addition to this, the coverage of user ratings is inherently much smaller in re-

commender systems’ datasets compared to TREC collections. The amount of un-
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known relevance — which in TREC is assumed to be negligible — is pervasive in rec-
ommendation settings (it is in fact intrinsic for the task to make sense), to a point
where some assumptions of the IR methodology may not hold, and the gap between
measured and real metric values becomes so significant that a metric’s absolute mag-
nitude may just lose any meaning. Still, such measurements may support comparative
assessments between systems, as far as the bias is system-independent.

Finally, the distribution of relevance in the retrieval space displays popularity pat-
terns that are absent in IR datasets. The number of users who like each item is very
variable (typically long-tailed) in recommendation datasets, whereas in TREC collec-
tions very few documents are relevant for more than one query. We shall show that
this phenomenon has a very strong effect not only on metric values, but more im-
portantly on how systems compare to each other.

In order to provide a formal basis for our study we start by elaborating a system-
atic characterisation of design alternatives for the adaptation of IR metrics to re-
commender systems, taking into account prior approaches described in the literature,
such as those presented in the previous chapter. This formal framework will help us
to analyse and describe the measurement biases in the application of IR metrics to

recommender systems, and study new approaches to mitigate them.

4.3 Experimental design alternatives

The application of Information Retrieval metrics to recommender systems evaluation
has been studied by several authors in the field (Barbieri et al., 2011; Breese et al.,
1998; Cremonesi et al., 2010; Herlocker et al., 2004; Shani and Gunawardana, 2011).
We elaborate here an experimental design framework that aims to synthesise com-
monalities and differences between studies, encompassing prior approaches and sup-
porting new variants upon a common methodological grounding. We formalise the
different methodologies presented in the previous chapter, and provide an equiva-
lence between both formulations.

In the following, given a rating set split into training and test rating sets, we say
an item [ € J is relevant for a user u € U if u rated i positively, and its correspond-
ing rating falls in the test set. By positive rating we mean a value above some design-
dependent threshold. All other items (non-positively rated or non-rated) are consid-
ered as non-relevant. Like in the previous chapter, recommender systems are re-
quested to rank a set of target items Ty, for each user. Such sets do not need to be the
same for each user, and can be formed in different ways. In all configurations Ty,
contains a combination of relevant and non-relevant items, and the different ap-

proaches are characterised by how these are selected, as we describe next.
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Design settings Alternatives

Al ¢c=7

Tl € = Uyey Reest (W)

AR T, D PRyesc (1)

IR [T N PRes(w)| =1

AN N, = € — PRest(U) = Rerain (1)
NN Fixed [N, |, random sampling

Base candidate items

Relevant

Item selection

Non-relevant

Table 4.2. Design alternatives in target item set formation.

4.3.1 Target Item Sampling

We identify three significant design axes in the formation of the target item sets: can-
didate item selection, relevant item selection, and irrelevant item sampling. We con-
sider two relevant alternatives for each of these axes, summarised in Table 4.2, which
we describe next.

We shall use R(u) and PR(u) to denote the set of all and positively rated items
by user u, respectively, and r(u), pr(u) to denote the respective size of those sets.
With the subscripts “test” and “train” we shall denote the part of such sets (or their
sizes) contained on the corresponding side of a data split. An equivalent notation
r(i), pr(i), and so on, will be used for the ratings of an item, and when no user or
item is indicated, the total number of ratings is denoted. This notation and the rest to
be used along the chapter are summarised in Table 4.3.

Let N, = T, — PRyest (1) be the non-relevant target items for u. As a general
rule, we assume non-relevant items are randomly sampled from a subset of candidate
items C C J, the choice of which is a design option. We mainly find two significant
alternatives for this choice: € =J (e.g. (Shani and Gunawardana, 2011)) and
C = Uyeu Reest (W) (e.g. Bellogin et al., 2011a; Vargas and Castells, 2011)). The first
one, which we denote as Al for “all items”, matches the typical IR evaluation setting,
where the evaluated systems take the whole collection as the candidate answers. The
second, to which we shall refer as TT (“test items”) is an advisable condition to avoid
certain biases in the evaluation of RS, as we shall see.

Once C is set, for each user we select a set N, € € — PRiest(#) — Ripain (W).
N, can be sampled randomly for a fixed size [N | (we call this option NN for “N
non-relevant”), or all candidate items can be included in the target set, Ny, = C —
PRiest () — Ripain (1) (we refer to this as AN for “all non-relevant”). Some authors
have even used Ty, = Ryese(u) (Basu et al., 1998; Jambor and Wang, 2010a; Jambor
and Wang, 2010b), but we discard this option as it results in a highly overestimated

precision (Bellogin et al., 2011a). The size of Ny, is thus a configuration parameter of
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the experimental design. For instance, in (Cremonesi et al., 2010) the authors pro-
pose |Ny| = 1,000, whereas in (Bellogin et al., 2011a) the authors consider N, =
Upew Reest (V) — Rirain (1) — PRyese (1), among other alternatives. To the best of
our knowledge, the criteria for setting this parameter have not been analysed in detail
in the literature, leaving it to common sense and/or trial and etror. It is worth noting
nonetheless that in general [Ny, | determines the number of calls to the recommenda-
tion algorithms, whereby this parameter provides a handle for adjustment of the cost
of the experiments.

Regarding the relevant item selection, two main options are reported in the lit-
erature, to which we shall refer as AR for “all relevant”, and 1R for “one relevant.”
In the AR approach all relevant items are included in the target set, ie., Ty D
PRes: (1) (Bellogin et al., 2011a). In the 1R approach, for user u, several target item
sets T,; are formed, each including a single relevant item (Cremonesi et al., 2010).
This approach may be more sensitive to the lack of recommendation coverage, as we
shall observe later on. The choice between an AR or a 1R design involves a differ-
ence in the way the ranking quality metrics are computed, as we shall discuss in the

next section.

Symbol Meaning
U 7 C Set of all users | all items | candidate items
" Trest Terain Nr. of all | test | training ratings
pr DPliest DPTtrain Nr. of all | test | training positive ratings
R(u) Riest(W)  Ryrain(u) [Setofall | test | training items rated by u
PR(u) PR.os:(u) PRypqin(w) [Set of all | test | training items liked by u
r(u) pr(u) INT. of items rated | liked | ... by u
(i) pr(i) INT. of users who rated | like | ... item i
T, Ty Set of target items for u in AR | 1R
N, N7 Non-relevant items added to build T, | T},
Pi@n(T,) P@n of item set T, as ranked by s for u
top¥(T,,n) 'Top n items in T,, as ranked by s for u
T4 (i,S) Position of i in S 3 i as ranked by s for u
i° i The item ranked k-th in T,, | T by s for u
o Split ratio: reee /T
P p p, = Ty N PR W|/ITyl, p = avg, p,
¢ “Average” target set size: 1/avg,(1/|T,1)
S Relevance density in target sets: pr/ (t|U|)

Table 4.3. Notation summary.
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4.3.2 AR vs. 1R Precision

Essentially, the way metrics are defined in AR and 1R differs in how they are aver-
aged. In AR the metrics are computed on each target set Ty, in the standard way as in
IR, and then averaged over users (as if they were queries). As a representative and
simple to analyse metric, we shall use P@n henceforth, but similar properties to all
the ones discussed here are observed for other metrics such as MAP and nDCG. The

mean AR precision of a recommender system S can be expressed as:
1 1 u
P,@n = m Z E |t0ps (Tw Tl) N PRtest(u)l
uelu

where top¥ (T, n) denotes the top n items in Ty, ranked by s for u.
In the 1R design, drawing from (Cremonesi et al., 2010), we compute and aver-

age the metrics over the Ty sets, as follows:

PTeest(u)
. 1 2 ‘ 4.1
1RP,@n = precision(n) = E Pr@n(Ty) *+1
PTtest -
ueu r=1

where P*@n(Ty)) is the standard precision of Ty, for u. This form to express the
metric is equivalent to the original formulation in (Cremonesi et al., 2010), but lets a
straightforward generalisation to any other IR metric such as MAP and nDCG, by
just using them in place of Py*@n in Equation (4.1). We shall intentionally use the
same symbol P to refer both to 1R and AR precisions when there is no ambiguity.
Whenever there may be confusion, or we wish to stress the distinction, we shall use
1RP to explicitly denote 1R precision.

AR precision basically corresponds to the standard precision as defined in IR,
whereas 1R precision, while following essentially the same principle, departs from it
in the formation of runs, and the way to average values. Additionally, note that the
maximum value of 1RP@n is 1/n as we shall see in the next section, mainly since
each run has only one relevant item. Besides, in Section 4.4 we shall establish a for-

mal relation between both ways to compute precision.

4.3.3 Preliminary Test

In order to illustrate the effects of the different described alternatives, we show their
results on three common collaborative filtering algorithms, based respectively on
probabilistic Latent Semantic Analisys (pLSA) (Hofmann, 2004), matrix factorisation
(MF) (Koren et al., 2009), and user-based nearest-neighbours (kNN) (Cremonesi
et al., 2010). As additional baselines, we include recommendation by popularity and

random recommendation. We use two datasets: the 1M version of MovieLens, and
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Figure 4.1. Precision of different recommendation algorithms on MovieLens 1M and
Last.fm using AR and 1R configurations.

an extract from Last.fm published by O. Celma (Celma and Herrera, 2008). Details
about the implementation and datasets partition are provided in Appendix A.

Figure 4.1 shows the P@10 results with AR and 1R configurations. For 1R we
shall always use TI-NN, with |T,,| = 100. This is a significantly lower value than | T,
= 1,001 reported in (Cremonesi et al., 2010), but we have found it sufficient to en-
sure statistical significance (e.g. Wilcoxon p < 0.001 for all pairwise differences be-
tween the recommenders in Figure 4.1), at a considerably reduced execution cost. We
adopt the TT policy in 1R to avoid biases that we shall describe later. In the AR con-
figuration we show TI-AN and AI-AN for MovielLens, though we shall generally
stick to TI-AN in the rest of the chapter. In Last.fm we use only TI-NN and a tem-
poral split, with [Ny | = 2,500 for efficiency reasons, since |I| = 176,948 is consid-
erably large in this dataset. We set the positive relevance rating threshold to 5 in
MovieLens, as in (Cremonesi et al., 2010), whereas in Last.fm, we take any number
above 2 playcounts as a sign of positive preference. We have experimented with
other thresholds for positive ratings, obtaining equivalent results to all the ones that
are reported here — the only difference is discussed in Section 4.6.

It can be seen that pLSA consistently performs best in most experimental con-
figurations, closely followed by popularity, which is the best approach in Last.fm
with AR, and that MF is generally superior to kINN. Some aspects strike our atten-
tion. First, even though P@10 is supposed to measure the same thing in all cases, the
range of the metric varies considerably across configurations and datasets, and even
the comparison is not always consistent. For instance, in AR popularity ranges from
0.08 on Movielens to 0.35 on Last.fm; and AR vs. 1R produces some disagreeing
comparisons on Last.fm. It may also be surprising that popularity, a non-personalised
method, fares so well compared to other algorithms. This effect was already found
recently in (Cremonesi et al., 2010) and (Steck, 2011). We also see that TI and Al
produce almost the same results. This is because Uyey Reese (W) ~ 7 in Movielens;

differences become noticeable in configurations where Uyeqy Reese (W) is significantly
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smaller than J, as we shall see in Section 4.6.2. As mentioned before, note that in this
case, the upper bound of P@10 for the 1R methodology is 0.10.

Some of this variability may reflect actual strengths and weaknesses of the algo-
rithms for different datasets, but we shall show that a significant part of the observed
variations is due to statistical biases arising in the adaptation of the Cranfield meth-
odology to recommendation data, and are therefore meaningless with respect to the
assessment of the recommenders’ accuracy. Specifically, we have found that the met-
rics are strongly biased to test data sparsity and item popularity. We shall analyse this
in detail in Sections 4.4 and 4.5, but before that we establish a relation between AR
and 1R precision that will help in this analysis.

4.3.4 Relation between AR and 1R

We have seen that AR and 1R precisions produce in general quite different values,
and we shall show they display different dependencies over certain factors. We find
nonetheless a direct relation between the two metrics. Specifically, 1R precision is
bound linearly by NN-AR precision, that is, IRP;@n = O(P;@n), as we show next.

Lemma. Let us assume the irrelevant item sampling in 1R is done only once for all
the test ratings of a user, that is, we select the same set of non-relevant items
N} = N, in the T;] target sets. If we denote T, = Ny U PRps (1) — in other words,
T, = U, T} —, we have:
|u|PS@n < 1RPS@1’1 < Zueu muPsu@mu(Tu) (4.2)
PTtest N Pliest

with My = N + Pries: (W) — 1, where P;@n is the NN-AR precision computed with

the target sets {T}, }.

Proof. Let ij; be the relevant item included in Ty, and let T#(i, S) denote the ranking
position assigned to i by s for u within a set S, where i € S. Since T; © T,,, we have
that T¥ (i}, Ty ) < t#(il, Ty). This means that if i}, is ranked above n in Ty, then it is
also above n in its target set Ty,. Hence Z:Ztle“(u)ﬁop;‘ (T),n) N PR, (W] =
[top¥ (T, n) N PRiest (W)]. Summing on u, and dividing by n and pryese we prove
the first inequality of Equation (4.2).

On the other hand, it is easy to see that T#(il,, TX) = t#(il, T,,)) + preese (W) —
1. Thus, if if; is ranked above 1 in T,¥, then it is above my, = n + pries(u) — 1 in

T,. Thus Pt ®|topt (T, n) N PReese ()] < [t0p¥(Ty, my) N PRegse (W) =

r=1

m, Ps@m,, (T,). And the second inequality of Equation (4.2) follows again by sum-

ming on U, and dividing by 1 and pries;. U
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Figure 4.2. Empiric illustration of Equation (4.2). The curves show 1IRP@10 and its bounds,
for pLSA and kNN over MovieLens 1M. The light and dark shades mark the distance to the
upper and lower bounds, respectively. The left side shows the evolution when progressively
removing test ratings, and the right side displays the variation with |T,, | ranging from 100 to
1,000.

Note that the assumption Ny, = N,, in the lemma is mild, inasmuch as the statis-
tical advantage in taking different N, for each r is unclear. Even in that case, P;@n
and avg,ecy (muPSu @m,, (Tu)) should be reasonably stable with respect to the ran-
dom sampling of Ny, and thus Equation (4.2) tends to hold. Figure 4.2 illustrates the
relation between the AR bounds and the 1R values. The empiric observation suggests
they provide similar while not fully redundant assessments. We also see that the
bounding interval reduces progressively as |T,,| is increased (right), and even faster

with test data sparsity (left) — in sum, the metric converges to its bounds as |T,| >

avgy PTiest (u) = prtest/lul-

4.3.5 Limitations of error-based metrics

The analysis presented in (Bellogin et al., 2011a) leads to question again the suitability
of error metrics. As in (McLaughlin and Herlocker, 2004), we found that there is no
direct equivalence between results with error- and precision-based metrics. Common
sense suggests that putting more relevant items in the top-N is more important for
real recommendation effectiveness than being accurate with predicted rating values,
which are usually not even shown to real users. Our study confirms that measured
results differ between these two perspectives. An online experiment, where real us-
ers’ feedback is contrasted to the theoretic measurements, may shed further light for
an objective assessment and finer analysis of which methodology better captures user
satisfaction.

Furthermore, the use of error-based metrics may not be applicable depending on
the dataset or the recommender evaluated. For instance, log-based datasets and
probabilistic (e.g. pLSA) or popularity-based recommenders cannot be evaluated

using error-based metrics because no real ratings are available in the first case, and in
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the second case because such recommenders do not necessarily predict a rating, not
even a score in the range of ratings (Cremonesi et al., 2010).

The application of ranking-based metrics to recommendation, nonetheless, is far
from being trivial. Firstly, there are obvious differences between the Cranfield para-
digm and a standard recommendation context, as described in Section 4.2. Secondly,
the evaluation methodology may be sensitive to any statistical bias which may appear
in the process. In the next sections we shall analyse two of these sources of bias:

sparsity and popularity.

4.4 Sparsity bias

As mentioned earlier, we identify two strong biases in precision metrics when applied
to recommendation. The first one is a sensitivity to the ratio of the test ratings vs. the
added non-relevant items. We study this effect by an analysis of the expected preci-

sion for non-personalised and random recommendations in the AR and 1R settings.

4.4.1 Expected Precision

Let i, € T, be the item ranked at position k in the recommendation output for u
by a recommender system S, and let 0 be the ratio of test data in the training-test
data split. In an AR setup the expected precision at n (over the sampling space of
data splits with ratio g, the sampling of Ny, and any potential non-determinstic as-

pect of the recommender system — as e.g. in a random recommender) is:

n
1
E[P,@n] = avg (—Z p(rel|i}®,u, Tu))
ueu \N

k=1
where p(rel|i,u) denotes the probability that item i is relevant for user u, i.e., the
probability that i € PRps:(u). Now we may write p(rel|i,ﬁ"s,u, Tu)
p(rel, T, iy, w)/p(Tu|ii* w), where we have p(T,|ip*u) = p(iy" €T,) =
IT.I/ICl. On the other hand, p(rel, T,|iy* u) < p(iy" € PRt W) NT,) =
p (i,‘i’u € PRtest(u)) = p(rel|iy*,u), since PReg(w) © Ty, in the AR methodol-
ogy. If s is a non-personalised recommender then i and u are mutually independ-

ent, and it can be scen that avg,cy p(rel|iy®, u) = avg, ey p(relli®). All this

gives:

n
E[P,@n] = l—t z avg p(rel|i}”)
£ uet
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where 1/t = avg, (1/|T,|) — if T,, have all the same size, then t = |T,|. As all rele-
vant items for each user are included in her target set, we have p(rel|i,’j’s) =
E[prtest(i};’s)] /IU|. If ratings are split at random into test and training, this is equal
too - pr(i}j’s)/l‘ul. Hence, we have:

E[P,@n] » |U| Z avg pr(iy®) (4.3)

Now, if items were recommended at random, we would have E[pr(tk RND)]
pr/|7], and therefore:
o-pr

. 4.4
(U] g6 4.4

E[PRND@n] = E[PRND] ~

where § is the average density of known relevance — which depends on how many
preferences for items the users have conveyed, and the size of the target test item
sets.

On the other hand, in a 1R evaluation setup, we have:

Preest(W) n

E[1RP,@n] = Z Z Z rel|i™*,u,TT
* n - PTiest ( |k )

ueu r=1

- U,r,S

where i;,”” € Ty denotes the item ranked at position k in T;]. For random recom-

mendation, we have p(?’elllur RND ), TT) = 1/|T;| = 1/t since all target sets have

the same size, whereby we have:

E[1RPryp@n] = E[1RPgryp] = 1/t (4.5)

4.4.2 Test Sparsity Bias

The above results for the expected random precision provide a formal insight on
strong metric biases to characteristics of the data and the experimental configuration.
In both Equations (4.4) for AR and (4.5) for 1R, we may express the expected ran-
dom precision as E[Pgyp @n] = avg, p, = p, where p,, is the ratio of positively
rated items by u in Ty, (or Ty, for that matter), and p ~ ¢ - §, or p = 1/t, depending
on the experimental approach. In the AR approach the density &, and thus the p
ratio, are also inversely proportional to t. Precision in this methodology is therefore
sensitive to (grows linearly with) o and pr, and is inversely proportional to t,
whereas 1R is only sensitive (inversely proportional) to t. The expected precision of
random recommendation naturally provides a lower bound for any acceptable re-
commender. Note that in any configuration of AR and 1R, the total precision of any

system is Py = Payp = p = E[Pryp @n], since as all systems are required to return
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Figure 4.3. Evolution of the precision of different recommendation algorithms on
MovielLens 1M, for different degrees of test sparsity. The x axis of the left and center
graphics shows different amounts of removed test ratings. The x axis in the right graphic is
the size of the target item sets.

(recommend) all items in the target sets Ty, (or Ty), that is, the total precision does
not depend on the ranking. At lower cutoffs, we expect to have P;@n >
E[Pgnp @n] = p. In other words, the lower bound — and so the expected range — for
the P@n of recommender algorithms grows with the average ratio of relevant items
per target item set.

The p ratio — hence the random precision — thus depends on several aspects of
the experimental setup (the experimental approach, the split ratio o, the number of
non-relevant items in the target sets), and the test collection (the number of ratings,
the number of users). Therefore, since p and the random precision can be adjusted
arbitrarily by how the test sets are split, constructed, etc., we may conclude that the
specific value of the metric has a use for comparative purposes, but has no
particular meaning by itself, unless accompanied by the corresponding aver-
age relevance ratio p of the target test sets. This is naturally in high contrast to
common IR datasets, where both the document collection and the relevance infor-
mation are fixed and not split or broken down into subsets. In fact, the metric values
reported in the TREC campaigns have stayed within a roughly stable range over the
years (Armstrong et al., 2009a; Armstrong et al., 2009b). Note also that the sparsity
bias we analyse here is different from the impact of training data sparsity in the per-
formance of collaborative filtering systems. What we describe is a statistical bias
caused by the sparsity of test data (as a function of overall data sparsity and/or test
data sampling), and its effect does not reflect any actual variation whatsoever in the
true recommendation accuracy.

The sparsity bias explains the precision range variations observed earlier in Fig-

ure 4.1. The empirically obtained values of random precision match quite exactly the
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theoretically expected ones. To what extent the random recommendation analysis
generalises to other algorithms can be further analysed empirically. Figure 4.3 illus-
trates the bias trends over rating density and target set size, using the experimental
setup of Section 4.3.3 (with TI-AN in AR, and TI-NN in 1R). We show only the
results in MovieLens — they display a similar effect on Last.fm. In the left and center
graphics, we simulate test sparsity by removing test ratings. In the right graphic we
vary t = |T,| in a 1R configuration. We observe that the empirical trends confirm
the theoretical analysis: precision decreases linearly with density in the AR methodol-
ogy (left graphic, confirming a linear dependence on &), whereas precision is inde-
pendent from the amount of test ratings in the 1R approach (center), and shows in-
verse proportionality to t (right). It can furthermore be seen that the biased behavior
analytically described for random recommendation is very similarly displayed by the
other recommenders (only differing in linear constants). This would confirm the
explanatory power of the statistical trend analysis of random recommendation, as a
good reference for similar biases in other recommenders. On the other hand, even
though the precision values change drastically in magnitude, it would seem that the
comparison between recommenders is not distorted by test sparsity. We find other
biases in precision measurements, however, which do affect the comparison of re-

commenders, as we study in the next section.

4.5 Popularity bias

Sparsity is not the only bias the metric measurements are affected by. The high ob-
served values for a non-personalised method such as recommendation by popularity
raise the question of whether this really reflects a virtue of the recommender, or
some other bias in the metric. We seck to shed some light on the question by a closer

study.

4.5.1 Popularity-Driven Recommendation

Even though they contradict the personalisation principle, the good results of popu-
larity recommendation can be given an intuitive explanation. By averaging over all
users, precision metrics measure the overall satisfaction of the user population. A
method that gets to satisfy a majority of users is very likely to perform well under
such metrics. In other words, average precision metrics tend to favour the satisfac-
tion of majorities, regardless of the dissatisfaction of minorities, whereby algorithms
that target majority tastes will expectably yield good results on such metrics. This
implicitly relies on the fact that on a random item split, the number of test ratings for
an item correlates with its number of training ratings, and its number of positive rat-

ings correlates with the total number of ratings. More formally, the advantage of
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popularity-oriented recommendation comes from the fact that in a random rating
split, E[priese ()] o< pr(i) o« E[prirqin ()] & 744in (i), which means that the items
with many training ratings will tend to have many positive test ratings, that is, they
will be liked by many users according to the test data. We analyse this next, more
formally and in more detail.

In a popularity recommender i}j’POP is the k-th item in the target set with most
ratings in the training set — ie., the system ranks items by decreasing order of
Ttmin(iZ’Pop). This ranking is almost user-independent (except for those, statistically
negligible, user items already in training which are excluded from the ranking) and
therefore, for an AR experimental design, Equation (4.3) applies. Since we have
Zﬁ:l pr(i};,Pop) = max; ZZ:l pr(i}lj’s) (as far as E[priese ()] & 1pqin (i) for a
random training-test split), the popularity recommendation is the best possible non-
personalised system, maximising E[Ps@n]. Popularity thus achieves a considerably
high precision value, just for statistical reasons.

For a 1R experimental design, using Equation (4.2) (lemma) we have:

U|E|P,@n E[lm, Pt@m,(T,
|UIE[P; ]SE[lRPS@n]sZ” [m, P} @m,(T,)]
PTtest N - PTiest

Now, since P@n and P*@m,, above are computed by AR, we may elaborate from

Equation (4.3) for a non-personalised recommender, and we get:

|71
n-t-pr uE

z pr(i}®) < E[1RP,@n] < ———— avg Z pr(i}*)

"PT ueu
This experimental approach is thus equally biased to popular items, since the latter
optimise X2_, pr(iy).

Note that the advantage of popularity over other recommenders is highly de-
pendent on the skewness in the distribution of ratings over items: if all items were
equally popular, the popularity recommender would degrade to random recommen-
dation — in fact slightly worse, as Pryese (1) X Typ5e (1) = 7/|I| = T4rqin (), so popu-
lar items would have fewer positive test ratings. On the other extreme, if a few items
(Iess than n) are liked by most users, and the rest are liked by very few, then popular-

ity approaches the maximum precision possible.

4.5.2 Popularity Distributions

In order to illustrate how the dependence between the popularity precision and the
background popularity distribution evolves, we simulate different degrees of skewness
in rating distributions. As a simulated distribution pattern we use a shifted power law
r(iy) = ¢y + B(c, + k)™%, where a determines the skewness (e.g. @ ~ 1.4 for
MovieLens 1M). Figure 4.4 (left) shows the shape of generated distributions ranging



4.5 Popularity bias 69

Simulated ratings 1R on simulated data Real datasets
Popularity L ‘s\' 5
—e— pLSA & w7
| —o— MF 08 |5 e
—+— kNN S R
---- Random < o 2
] 06 /S &
RS
] 04 e
. o \):\\
//
1 024/~
[ ’
O—0—0 '’
T T T T T T T T T 1 0
Items 0 04 08 12 16 2 Items

[

Figure 4.4. Effect of popularity distribution skewness on the popularity bias. The left
graphic shows the cumulated popularity distribution of artificial datasets with simulated
ratings, with skewness ranging from a = 0 to 2. The x axis represents items by popularity
rank, and the y axis displays the cumulative ratio of ratings. The central graphic shows the
precision of different recommendation algorithms on each of these simulated datasets. The
right graphic shows the cumulative distribution of positive ratings in real datasets.

from uniform (@ = 0) to a very steep long-tailed popularity distribution (@ = 2), and
(center) how the measured precision evolves in this range. The artificial data are cre-
ated with the same number of users, items, and ratings (therefore the same rating den-
sity) as in MovieLens 1M, setting ¢; and ¢, by a fit to this dataset, and enforcing these
constraints by adjusting 8. The rating values ate assigned randomly on a 1-5 scale, also
based on the prior distribution of rating values in Movie-Lens.

The results in Figure 4.4 (center) evidence the fact that the precision of popular-
ity-based recommendation is heavily determined by the skewness of the distribution.
It benefits from steep distributions, and degrades to slightly below random (0.0077
vs. 0.0100) when popularity is uniform. This slightly below-random performance of
popularity recommendation at @ = 0 is explained by the fact that E[pryes (i)] «
Elriese (D] = 7 () — E[1train ()] is inverse to the popularity ranking by Tepqin (1)
when (i) is uniform, as predicted at the end of the previous section. KNN and MF
stay essentially around random recommendation. This is because the data are devoid
of any consistent preference pattern (as collaborative filtering techniques would as-
sume) in this experiment, since the ratings are artificially assigned at random, and the
results just show the “pure” statistical dependency to the popularity distribution.
pLSA does seem to take advantage of item popularity, as it closely matches the effec-
tiveness of popularity recommendation. We show only the 1R design, but the effect
is the same in AR.

This observation also explains the difference between datasets from IR and
those from recommendation with regards to the popularity bias. Figure 4.4 (right)

shows the cumulative distribution of positive user interaction data per item in three
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datasets: Netflix, MovieLens, and Last.fm (the dataset in Section 4.3.3). The shapes
of the curves are typical of long-tailed distributions, where a few popular items ac-
cumulate most of the preference data (Celma, 2010; Celma and Cano, 2008). This
contrasts with the distribution of positive relevance judgments over documents in
TREC data (same figure) — where we have aggregated 30 individual tracks, filtering
out the documents that are not relevant to any query, and obtaining a set of 703 que-
ries, 129,277 documents, and 149,811 positive judgments. The TREC distribution is
considerably flatter, not far from uniform: 87.2% of documents are relevant to just
one quetry, and the maximum number of positive assessments per document is 25
(3.6% of queries), whereas the top popular item in Netflix, MovieLens, and Last.fm,
is liked by 20.1%, 32.7% and 73% of users, respectively.

Several reasons account for this difference between retrieval and recommender
datasets. First, in IR queries are selected by design, intending to provide a somewhat
varied testbed to compare retrieval systems. Hence, including similar queries with
overlapping relevance would not make much sense. Second, queries in natural search
scenarios are generally more specific and narrower than global user tastes for rec-
ommendation, whereby the corresponding relevant sets have much less intersection.
Furthermore, the TREC statistics we report are obtained by aggregating the data of
many tracks, in order to seek any perceptible popularity slant. The typical TREC ex-
periments are actually run on separate tracks comprising typically 50 queries, where
very few documents, if any, are relevant to more than one query. Note also that even
though we have filtered out over 0.7 million non-relevant plus nearly 5 million unla-
beled documents in the TREC statistics, the non-relevant documents actually remain
as input to the systems, contrarily to experiments in the recommender domain, thus
making up an even flatter relevance distribution. Moreover, in the usual IR evalua-
tion setting, the systems have no access to the relevance data — thus, they have no
means to take a direct bias towards documents with many judgments —, whereas in
recommendation, this is the primary input the systems (particularly collaborative fil-
tering recommenders) build upon. The popularity phenomenon has therefore never
been an issue in IR evaluation, and neither the metrics nor the methodologies have
had to even consider this problem, which arises now when bringing them to the rec-
ommendation setting — where the overlap between user preferences is not only

common, but actually needed by collaborative filtering algorithms.

4.6 Overcoming the popularity bias

After analysing the effects of popularity in precision metrics, the issue remains: to
what extent do the good results of popularity recommendation reflect only a statisti-
cal bias in a metric, or any degree of actual recommendation quality? The same ques-

tion should be raised for pLSA, which seems to follow the popularity trends quite
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Figure 4.5. Rating splits by a) a popularity percentile partition (left), and b) a uniform
number of test ratings per item (right). On the left, the red dashed split curve represents
E[pr,.s. ()] —i.e., the random split ratio needs not be applied on a per-item basis — whereas
on the right it does represent pr . (i).

closely. We address the question by proposing and examining alternative experimen-
tal configurations, where the statistical role of popularity gets reduced, as we propose

next.

4.6.1 Percentile-Based Approach (P1R)

We propose a first approach to neutralise the popularity bias, which consists in parti-
tioning the set of items into M popularity percentiles J, € J, breaking down the
computation of accuracy by such percentiles, and averaging the m obtained values.
By doing so, in a common long-tailed popularity distribution, the margin for the
popularity bias is considerably reduced, as the difference Ay, in the number of posi-
tive test ratings per item between the most and least popular items of each percentile
is not that high. The popularity recommender is forced to recommend as many un-
popular as popular items, thus leveling the statistical advantage to a significant extent.
It remains the optimal non-personalised algorithm, but the difference — and thus the
bias — is considerably reduced. The technique is illustrated in Figure 4.5a.

A limitation of this approach is that it restricts the size of the target sets by
|T,| < |7|/m. For instance, for m = 10 in MovieLens 1M, this imposes a limit of
|T, | < ~ 370, which seems acceptable for 1R. The restriction can be more limiting in
the AR approach, e.g. the TI and Al options cannot be applied (except within the
percentiles). For this reason, we will only apply the percentile technique in the 1R
design, a configuration to which we shall refer as P1R.
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4.6.2 Uniform Test Item Profiles (UAR, U1R)

We now propose a second technique consisting of the formation of data splits where
all items have the same amount of test ratings. The assumption is that the items with
a high number of training ratings will no longer have a statistical advantage by having
more positive test ratings. That is, the relation E[priegs (1)] o 74qin (i) described in
Section 4.5.1 breaks up. The approach consists of splitting the data by picking a set T
of candidate items, and a number 7 of test ratings per item so that |T|n/r = o. For
this to be possible, it is necessary that (1 — &) r(i) =1, Vi € T, where € is a mini-
mum ratio of training ratings per item we consider appropriate. In particular, in order
to allow for n-fold cross-validation, we should have £ = 1/n. The selection of T can
be done in several ways. We propose to do so in a way that it maximises |T], i.e., to
use as many different target test items as possible, avoiding a biased selection to-
wards popular items. If we sort i € J by popularity rank, it can be seen that this is
achieved by picking T={i,€dlk<{} with (=
max {k| (1 —¢&)r(i,) k/r = g}, so thatn = (1 — €) r(ig). Figure 4.5b illustrates
this procedure.

The expected effect of this approach is that the statistical relation E[pryes: ()] o
pr (i) no longer holds, and neither should hold now, as a consequence, the rationale
described in Section 4.5.1 for popularity being the optimum non-personalised re-
commender. In fact, since E[pries: ()] =n-pr(i)/r(i) for any i €T, and
n = o - r/|T|, it can be seen that if C = T (TI policy) Equation (4.3) for AR yields:

pr(iy®)
ElRenl tI’UI Z well (1)

for any non-personalised recommender. If the ratio pr(i K ) / r(i;'s) of positive
ratings does not depend on k, we have E[P;@n] = E[Pgyp@n] = o - §. This means
that popularity recommendation may get some advantage over other recommenders
only if — and to the extent that — popular items have a higher ratio of positive ratings
than unpopular items, and popularity recommendation will degrade to random preci-
sion otherwise. On the other hand, it can be seen that if C 2 T (i.e., the TI policy is
not adhered to), then E[Pgyp @n] would get reduced by a factor of IT|/]1€].

For a non-personalised recommender in a 1R design, elaborating from Equa-
tions (4.2) and (4.3) we get:

pr(lk
n- t pr uE‘uz T(lus) = 1RP@ ] t " pr ueuZ T'(lus '
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Figure 4.6. Positive ratings ratio vs. popularity rank in MovieLens 1M. The graphic plots
pr(i)/r (i), where items are ordered by decreasing popularity. We display averaged values
for 100 popularity segments, for a smoothed trend view.

an equivalent situation where the measured precision of popularity recommendation
is bound by the potential dependence between the ratio of positive ratings and popu-
larity.

Figure 4.6 shows this ratio as pr(i)/r(i) with respect to the item popularity
rank in MovieLLens 1M. It can be seen that indeed the ratio grows with popularity in
this dataset, which does lend an advantage for popularity recommendation. Even so,
we may expect the bias to be moderate — but this has to be tested empirically, as it
depends on the dataset. Note also that in applications where all ratings are positive
(as e.g. in our Last.fm setup), popularity — and any non-personalised recommender —
would drop exactly to random precision (E[Ps@n] = ¢ - § in AR and 1/t in 1R).

A limitation of this approach is that the formation of T may impose limits on the
value of 0, and/or the size of T. If the popularity distribution is very steep, T may
turn out small and therefore biased to a few popular items. Moreover, there is in gen-
eral a solution for T only up to some value of 0 — it is easy to see (formally, or just
visually in Figure 4.5) that as ¢ = 1 there is no item for which (1 —€) r(iy) k/r =
0, unless the popularity distribution was uniform, which is never the case in practice.
We have however not found these limitations to be problematic in practice, and
common configurations turn out to be feasible without particular difficulty. For in-
stance, in MovieLens 1M we get |T| = 1,703 for ¢ = 0.2 with € = 0.2 (allowing for a
5-fold cross-validation), resulting in 17 = 118 test ratings per item.

This method can be used, as noted, in both the AR and 1R approaches. We shall
refer to these combinations as UAR and U1R respectively, where ‘U’ stands for the
“uniform” number of item test ratings. In U1R it is important to set C = T in order
to sample non-relevant items within T (i.e., N, € T, for the TI policy). Otherwise,
popularity would have a statistical advantage over other recommenders, as it would

systematically rank irrelevant items in Ny — T below any relevant item in T, whereas
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other algorithms might not. The same can be considered in UAR, unless the experi-
mental setup requires [Ty | > |T|, as e.g. in the Al design. In that case a slight popu-

larity bias would arise, as we shall see next.

4.6.3 Experimental Results

Figure 4.7 compares the results measured by 1R, AR and their corresponding popu-
larity-neutralising variants. The setup is the same as in previous sections, except that
for AR, we take TI-NN with [Ny | = 1,700, to level with UAR in random precision.
All the results correspond to MovieLens 1M except Last.fm where indicated. It can
be seen that P1R, UIR and UAR effectively limit the popularity bias. The techniques
seem to be more effective on 1R than AR: UIR and (even more) P1R actually place
the popularity algorithm by the level of random recommendation, whereas the meas-
ured popularity precision decreases in UAR, but remains above kNN. The advantage
of popularity over randomness in UIR and P1R is explained by the bias in the ratio
of positive ratings in popular items (Figure 4.6). This ratio is constant in Last.fm,
whereby popularity drops to random in U1R, as predicted by our analysis in the pre-
vious section, proving that the popularity bias remaining in the uniform-test ap-
proach is caused by this factor. This residual bias is higher in U1R than P1R, because
in the former, Ny, is sampled over a larger popularity interval (|T| = 1,703 vs. |I]| /
10 = 370 items), giving a higher range for advantage by popularity, which also ex-
plains why the latter still overcomes kNN in UAR. We may observe the importance
of using the TI policy in UAR, without which (in AI-UAR) a higher bias remains. We
also show the effect of removing the 10% most popular head items from the test
data (and also from C, i.e., they are excluded from N, sampling) in 1R, as a simple
strategy to reduce the popularity bias (Cremonesi et al., 2010). We see that this tech-
nique reduces the measured precision of popularity, but it is not quite as effective as
the proposed approaches.

It is finally worth emphasising how the percentile and uniform-test ap-
proaches discriminate between pure popularity-based recommendation and
an algorithm like pLSA, which does seem to take popularity as one of its signals,
but not the only one. The proposed approaches allow uncovering the difference,
neutralising popularity but not pLSA, which remains the best algorithm in all con-
figurations.

As we mentioned in Section 4.3, we have taken precision as a simple and com-
mon metric for our study, but all the presented analysis and proposed alternatives
straightforwardly generalise to other standard IR metrics, such as MAP, nDCG, and
Mean Reciprocal Rank (MRR). Their application is direct in the AR setting; and they
can be applied in 1R by simply introducing them in place of precision in the internal
summation of Equation (4.1). Figure 4.7 shows results for nDCG, where we see that
the analysed patterns hold just the same. The AR approach provides room for a
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Figure 4.7. Precision and nDCG of recommendation algorithms on MovieLens 1M (and
Last.fm only where indicated) using the 1R, U1R, P1R (m = 10 percentiles), AR, and UAR
methodologies. The “-10% head” bars show the effect of removing the 10% most popular
items from the test data (Cremonesi et al., 2010).

slightly wider metric variety than 1R, in the sense that some metrics reduce to each
other in 1R. For instance, for a single relevant item, MAP is equivalent to Mean Re-
ciprocal Rank (MRR = 1/k where k is the rank of the first relevant item). And
nDCG is insensitive to relevance grades in 1R (the grade of the single relevant item

cancels out), whereas grades do make a difference in AR.

4.7 Conclusions

The application of Information Retrieval methodologies to the evaluation of recom-
mender systems is not necessarily as straightforward as it may seem. Hence, it de-
serves close analysis and attention to the differences in the experimental conditions,
and their implications on the explicit and implicit principles and assumptions on
which the metrics build. We have proposed a systematic characterisation of design
alternatives in the adaptation of the Cranfield paradigm to recommendation tasks,
aiming to contribute to the convergence of evaluation approaches. We have identi-
fied assumptions and conditions underlying the Cranfield paradigm which are not
granted in usual recommendation experiments. We have detected and examined re-
sulting statistical biases, namely test sparsity and item popularity, which do not arise

in common test collections from IR, but do interfere in recommendation experi-
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ments. Sparsity is clearly a noisy variable that is meaningless with respect to the value
of a recommendation. Whether popularity is in the same case is less obvious; we
propose experimental approaches that neutralise this bias, leaving way to an unbiased
observation of recommendation accuracy, isolated from this factor. With a view to
their practical application, we have identified and described the pros and cons of the
array of configuration alternatives and variants analysed in this study.

In general, we have found that evaluation metrics computed in AR and 1R ap-
proaches differ in how they are averaged. This means, more specifically, that precision
obtained by approaches following a 1R design is bound linearly by precision of AR
approaches. Moreover, we have observed that a percentile-based evaluation considera-
bly reduces the margin for the popularity bias, although the main limitation of this ap-
proach is that it specifies a constraint on the size of the possible target sets. Addition-
ally, a uniform-test approach removes any statistical advantage provided by having
more positive test ratings. Furthermore, we have found that both approaches discrimi-
nate between pure popularity-based recommendation and an algorithm like pLLSA.

The main goal of our research addresses a second-order problem: we aim to pre-
dict the accuracy of the predictions of recommendation algorithms. As we shall see,
the (second-order) evaluation of our researched methods relies on the (first-order)
evaluation metrics and methodologies by which the recommendation algorithms’
accuracy is measured. In order to consistently evaluate our methods, the primary
recommendation evaluation has to be reliable and well-understood. Any bias in the
process would lead to inconclusive or misleading results about the predictive power
of our methods. For this reason, the results presented in this chapter are a necessity
for the main goal of this thesis, but the outcome can be of more general use. Specifi-
cally, in the following chapters we shall compare how the different methodologies
(with and without neutralised biases) may impact the observations on the predictive
power of our predictors.

The popularity effects in recommender systems have started to be reported in
recent work (Cremonesi et al., 2011; Cremonesi et al., 2010; Steck, 2011). Our re-
search complements such findings by seeking principled theoretical and empirical
explanations for the biases, and providing solutions within the frame of IR evaluation
metrics and methodology — complementarily to the potential definition of new spe-
cial-purpose metrics (Steck, 2011). The extent to which popularity is a noisy signal
may be further analysed by developing more complete metric schemes incorporating
gain and cost dimensions, where popular items would expectably score lower. Such
metrics may e.g. account for the benefits (to both recommendation consumers and
providers) drawn from novel items in typical situations (Vargas and Castells, 2011),
as a complement to plain accuracy. Online tests with real users should also be valu-
able for a comparative assessment of offline observations, and the validation of ex-

perimental alternatives.
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