
 

 

Chapter 4 

4 Ranking-based evaluation of  

recommender systems: 

experimental designs and biases 

There is an increasing consensus in the Recommender Systems community that the 

dominant error-based evaluation metrics are insufficient, and to some extent inade-

quate, to properly assess the practical effectiveness of recommendations. Seeking to 

evaluate recommendation rankings – which largely determine the effective accuracy 

in matching user needs – rather than predicted rating values, Information Retrieval 

metrics have started to be applied to evaluate recommender systems. 

In this chapter we analyse the main issues and potential divergences in the appli-

cation of Information Retrieval methodologies on recommender system evaluation, 

and provide a systematic characterisation of experimental design alternatives for this 

adaptation. We lay out an experimental configuration framework upon which we 

identify and analyse specific statistical biases arising in the adaptation of Information 

Retrieval metrics to recommendation tasks, which considerably distort the empirical 

measurements, hindering the interpretation and comparison of results across experi-

ments. We propose two experimental design approaches that effectively neutralise 

such biases to a large extent. We support our findings and proposals through both 

analytical and empirical evidence. 

We start the chapter by introducing the problem of (un)biased evaluation in re-

commender systems. The reminder of the chapter follows by revisiting the principles 

and assumptions underlying the Information Retrieval evaluation methodology: the 

Cranfield paradigm (Section 4.2). After that, in Section 4.3 we elaborate a formal 

synthesis of the main approaches to the application of Information Retrieval metrics 

to recommendation. In Sections 4.4 and 4.5 we analyse, respectively, the sparsity and 

popularity biases of Information Retrieval metrics on recommendation tasks. We 

present and evaluate two approaches to avoid these biases in Section 4.6,and end 

with some conclusions in Section 4.7.  
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4.1 Introduction 

There seems to be a raising awareness in the Recommender Systems (RS) community 

that important – or even central – open questions remain to be addressed concerning 

the evaluation of recommender systems. As we mentioned in the previous chapter, 

the error in predicting held-out user ratings has been by far the dominant offline 

evaluation methodology in the RS literature (Breese et al., 1998; Herlocker et al., 

2004). The limitations of this approach are increasingly evident, and have been exten-

sively pointed out (Cremonesi et al., 2010). The prediction error has been found to 

be far from enough or even adequate to assess the practical effectiveness of a re-

commender system in matching user needs. The end users of recommendations re-

ceive lists of items rather than rating values, whereby recommendation accuracy met-

rics – as surrogates of the evaluated task – should target the quality of the item selec-

tion and ranking, rather than the numeric system scores that determine this selection. 

For this reason, researchers are turning towards metrics and methodologies from 

the Information Retrieval (IR) field (Barbieri et al., 2011; Cremonesi et al., 2010; Her-

locker et al., 2004), where ranking evaluation has been studied and standardised for 

decades. Yet, gaps remain between the methodological formalisation of tasks in both 

fields, which result in divergences in the adoption of IR methodologies, hindering the 

interpretation and comparability of empirical observations by different authors. The 

use of IR evaluation techniques involves the adoption of the Cranfield paradigm 

(Voorhees and Harman, 2005), and common metrics such as precision, mean average 

precision (MAP), and normalised Discounted Cumulative Gain (nDCG) (Baeza-

Yates and Ribeiro-Neto, 2011). Given the natural fit of top-n recommendation in an 

IR task scheme, the adoption of IR methodologies would seem straightforward. 

However, recommendation tasks, settings, and available datasets for offline evalua-

tion involve subtle differences with respect to the common IR settings and experi-

mental assumptions, which result in substantial biases to the effectiveness measure-

ments that may distort the empiric observations and hinder comparison across sys-

tems and experiments. 

Furthermore, how to measure the performance of a recommender system is a key 

issue in our research. The variability in the experimental configurations, and the ob-

served statistical biases of the evaluation methodologies should be well understood, 

since we aim to predict the performance of a system. We should avoid the situation 

where a metric shows some source of noise together with the recommender‟s quality, 

since then a predictor capturing only that noise would appear as an (equivocal) effec-

tive performance predictor. 

Taking up from prior studies on the matter (Cremonesi et al., 2010; Herlocker 

et al., 2004; Shani and Gunawardana, 2011; Steck, 2011), we revisit the methodologi-

cal assumptions underlying IR metrics, and analyse the differences between Recom-
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mender Systems and Information Retrieval evaluation settings and their implications. 

Upon this, we identify two sources of bias in IR metrics on recommender systems: 

data sparsity and item popularity. We characterise and study the effect of these two 

factors both analytically and empirically. We show that the value range of common 

IR metrics is determined by the density of the available user preference information, 

to such an extent that the measured values per se are not meaningful, except for the 

purpose of comparison within a specific experiment. Furthermore, we show that the 

distribution of ratings among items has a drastic effect on how different algorithms 

compare to each other. Finally, we propose and analyse two approaches to mitigate 

popularity biases on the measured ranking quality, providing theoretical and empiri-

cal evidence of their effectiveness. 

4.2 Cranfield paradigm for recommendation 

Information Retrieval evaluation methodologies have been designed, studied, and 

refined over the years under the so-called Cranfield paradigm (van Rijsbergen, 1989; 

Voorhees, 2002b). In the Cranfield paradigm, as e.g. typically applied in the TREC 

campaigns (Voorhees and Harman, 2005), information retrieval systems are evaluated 

on a dataset comprising a set of documents, a set of queries – referred to as topics and 

consisting of a description or representation of user information needs –, and a set of 

relevance judgments by human assessors – referred to as ground truth. The assessors 

manually inspect queries and documents, and decide whether each document is rele-

vant or not for a query. Theoretically, each query-document pair should be assessed 

for relevance, which, for thousands or millions of documents, is obviously unfeasi-

ble. Therefore, a so-called pooling approximation is applied, in which the assessors 

actually inspect and judge just a subset of the document collection, consisting of the 

union of the top-n documents returned by a set of systems for each query. These 

systems for pooling are commonly the ones to be evaluated and compared, and n is 

called the pooling depth, typically ranging around 100 documents. While this procedure 

obviously misses some relevant documents, it has been observed that the degree of 

incompleteness is reasonably small, and the missing relevance does not alter the em-

piric observations significantly, at least up to some ratio between the pooling depth 

and the collection size (Buckley et al., 2007). 

Whereas in a search system users may enter multiple queries, the recommenda-

tion task – in its classic formulation – typically considers a single “user need” per 

user, that is, a user has a set of cohesive preferences which defines her main interests. 

In this view a natural fit of recommendation in the Cranfield paradigm would take 

users – as an abstract construct – as the equivalent of queries in ad-hoc retrieval (the 

user need to be satisfied), and items as equivalent to documents (the objects to be 

retrieved and ranked), summarised in Table 4.1. A first obvious difference is that 
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queries are explicit representations of specific information needs, whereas in the rec-

ommendation setting, user profile records are a global and implicit representation of 

what the user may need or like. Still, the query-user mapping is valid, inasmuch as 

user profiles may rightfully fit in the IR scheme as “vague queries.” 

The definition of ground truth is less straightforward. User ratings for items, as 

available in common recommendation datasets, are indeed relevance judgments of 

items for user needs. However, many recommendation algorithms (chiefly, collabora-

tive filtering methods) require these “relevance judgments” as input to compute rec-

ommendations. The rating data withholding evaluation approach, pervasive in RS 

research, naturally fits here: some test ratings can be held out as ground truth and the 

rest be left as training input for the systems. Differently from TREC, here the “que-

ries” and the relevance assessments are both entered by the same people: the end-

users. Furthermore, how much data are taken for training and for ground truth is left 

open to the experiment designers, thus adding a free variable to be watched over as it 

significantly impacts the measurements. 

On the other hand, whereas in the IR setting all the documents in the collection 

are candidate answers for all queries, the set of target items on which recommender 

systems are tested for each user need not be necessarily the same. As already de-

scribed in the previous chapter, in general, the items with a test rating are included in 

the candidate set for the raters, though not necessarily in a single run (Cremonesi 

et al., 2010). Moreover, it is common to select further non-rated target items, but not 

necessarily all the items (Bellogín et al., 2011a). Furthermore, the items rated by a 

user in the training set are generally excluded from the recommendation to this user. 

The way these options are configured has a drastic effect on the resulting measure-

ments, with variations in orders of magnitude (Bellogín et al., 2011a). 

In addition to this, the coverage of user ratings is inherently much smaller in re-

commender systems‟ datasets compared to TREC collections. The amount of un-

Task element TREC ad-hoc retrieval task Recommendation task 

Information need expression Topic (query and description) User profile 

Candidate answers 

All documents in the collection Target item set 

Same for all queries 
One or more per user, 

commonly different 

Document data available as 

system input 
Document content 

Training ratings,  

item features 

Relevance Topical, objective Personalised, subjective 

Ground truth Relevance judgments Test ratings 

Relevance assessment Editorial assessors End users 

Relevance knowledge  

coverage 

Reasonably complete  

(pooling) 

Highly incomplete 

(inherently to task) 

Table 4.1. Fitting the recommendation task in the Cranfield IR evaluation paradigm 
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known relevance – which in TREC is assumed to be negligible – is pervasive in rec-

ommendation settings (it is in fact intrinsic for the task to make sense), to a point 

where some assumptions of the IR methodology may not hold, and the gap between 

measured and real metric values becomes so significant that a metric‟s absolute mag-

nitude may just lose any meaning. Still, such measurements may support comparative 

assessments between systems, as far as the bias is system-independent. 

Finally, the distribution of relevance in the retrieval space displays popularity pat-

terns that are absent in IR datasets. The number of users who like each item is very 

variable (typically long-tailed) in recommendation datasets, whereas in TREC collec-

tions very few documents are relevant for more than one query. We shall show that 

this phenomenon has a very strong effect not only on metric values, but more im-

portantly on how systems compare to each other.  

In order to provide a formal basis for our study we start by elaborating a system-

atic characterisation of design alternatives for the adaptation of IR metrics to re-

commender systems, taking into account prior approaches described in the literature, 

such as those presented in the previous chapter. This formal framework will help us 

to analyse and describe the measurement biases in the application of IR metrics to 

recommender systems, and study new approaches to mitigate them. 

4.3 Experimental design alternatives 

The application of Information Retrieval metrics to recommender systems evaluation 

has been studied by several authors in the field (Barbieri et al., 2011; Breese et al., 

1998; Cremonesi et al., 2010; Herlocker et al., 2004; Shani and Gunawardana, 2011). 

We elaborate here an experimental design framework that aims to synthesise com-

monalities and differences between studies, encompassing prior approaches and sup-

porting new variants upon a common methodological grounding. We formalise the 

different methodologies presented in the previous chapter, and provide an equiva-

lence between both formulations. 

In the following, given a rating set split into training and test rating sets, we say 

an item     is relevant for a user     if   rated   positively, and its correspond-

ing rating falls in the test set. By positive rating we mean a value above some design-

dependent threshold. All other items (non-positively rated or non-rated) are consid-

ered as non-relevant. Like in the previous chapter, recommender systems are re-

quested to rank a set of target items    for each user. Such sets do not need to be the 

same for each user, and can be formed in different ways. In all configurations    

contains a combination of relevant and non-relevant items, and the different ap-

proaches are characterised by how these are selected, as we describe next. 
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4.3.1 Target Item Sampling 

We identify three significant design axes in the formation of the target item sets: can-

didate item selection, relevant item selection, and irrelevant item sampling. We con-

sider two relevant alternatives for each of these axes, summarised in Table 4.2, which 

we describe next. 

We shall use      and       to denote the set of all and positively rated items 

by user  , respectively, and     ,       to denote the respective size of those sets. 

With the subscripts “    ” and “     ” we shall denote the part of such sets (or their 

sizes) contained on the corresponding side of a data split. An equivalent notation 

    ,      , and so on, will be used for the ratings of an item, and when no user or 

item is indicated, the total number of ratings is denoted. This notation and the rest to 

be used along the chapter are summarised in Table 4.3. 

Let                 be the non-relevant target items for  . As a general 

rule, we assume non-relevant items are randomly sampled from a subset of candidate 

items    , the choice of which is a design option. We mainly find two significant 

alternatives for this choice:     (e.g. (Shani and Gunawardana, 2011)) and 

               (e.g. (Bellogín et al., 2011a; Vargas and Castells, 2011)). The first 

one, which we denote as AI for “all items”, matches the typical IR evaluation setting, 

where the evaluated systems take the whole collection as the candidate answers. The 

second, to which we shall refer as TI (“test items”) is an advisable condition to avoid 

certain biases in the evaluation of RS, as we shall see. 

Once   is set, for each user we select a set                         . 

   can be sampled randomly for a fixed size      (we call this option NN for “N 

non-relevant”), or all candidate items can be included in the target set,      

                    (we refer to this as AN for “all non-relevant”). Some authors 

have even used             (Basu et al., 1998; Jambor and Wang, 2010a; Jambor 

and Wang, 2010b), but we discard this option as it results in a highly overestimated 

precision (Bellogín et al., 2011a). The size of    is thus a configuration parameter of 

Design settings Alternatives 

Base candidate items 
AI     

TI                 

Item selection 

Relevant 
AR              

1R    
               

Non-relevant 
AN                          

NN Fixed     , random sampling 

Table 4.2. Design alternatives in target item set formation. 
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the experimental design. For instance, in (Cremonesi et al., 2010) the authors pro-

pose      = 1,000, whereas in (Bellogín et al., 2011a) the authors consider    

                                , among other alternatives. To the best of 

our knowledge, the criteria for setting this parameter have not been analysed in detail 

in the literature, leaving it to common sense and/or trial and error. It is worth noting 

nonetheless that in general      determines the number of calls to the recommenda-

tion algorithms, whereby this parameter provides a handle for adjustment of the cost 

of the experiments. 

Regarding the relevant item selection, two main options are reported in the lit-

erature, to which we shall refer as AR for “all relevant”, and 1R for “one relevant.” 

In the AR approach all relevant items are included in the target set, i.e.,    

          (Bellogín et al., 2011a). In the 1R approach, for user  , several target item 

sets   
  are formed, each including a single relevant item (Cremonesi et al., 2010). 

This approach may be more sensitive to the lack of recommendation coverage, as we 

shall observe later on. The choice between an AR or a 1R design involves a differ-

ence in the way the ranking quality metrics are computed, as we shall discuss in the 

next section. 

Symbol Meaning 

      Set of all users | all items | candidate items 

               Nr. of all | test | training ratings  

                  Nr. of all | test | training positive ratings 

                        Set of all | test | training items rated by    

                           Set of all | test | training items liked by   

           … Nr. of items rated | liked | … by    

           … Nr. of users who rated | like | … item   

     
   Set of target items for   in AR | 1R  

     
   Non-relevant items added to build    |   

   

  
             of item set    as ranked by   for   

    
         Top   items in    as ranked by   for   

  
        Position of   in     as ranked by   for   

  
   

   
     

  The item ranked  -th in    |   
  by   for   

    Split ratio:         

       
 
                               

    “Average” target set size:                 

    Relevance density in target sets:            

Table 4.3. Notation summary. 
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4.3.2 AR vs. 1R Precision 

Essentially, the way metrics are defined in AR and 1R differs in how they are aver-

aged. In AR the metrics are computed on each target set    in the standard way as in 

IR, and then averaged over users (as if they were queries). As a representative and 

simple to analyse metric, we shall use     henceforth, but similar properties to all 

the ones discussed here are observed for other metrics such as MAP and nDCG. The 

mean AR precision of a recommender system   can be expressed as: 

     
 

   
 

 

 
     

                  

   

 

where     
        denotes the top   items in    ranked by   for  .  

In the 1R design, drawing from (Cremonesi et al., 2010), we compute and aver-

age the metrics over the   
  sets, as follows: 

 

                    
 

      
    

      
  

         

      

 (4.1) 

where   
      

   is the standard precision of   
  for  . This form to express the 

metric is equivalent to the original formulation in (Cremonesi et al., 2010), but lets a 

straightforward generalisation to any other IR metric such as MAP and nDCG, by 

just using them in place of   
    in Equation (4.1). We shall intentionally use the 

same symbol   to refer both to 1R and AR precisions when there is no ambiguity. 

Whenever there may be confusion, or we wish to stress the distinction, we shall use 

1RP to explicitly denote 1R precision. 

AR precision basically corresponds to the standard precision as defined in IR, 

whereas 1R precision, while following essentially the same principle, departs from it 

in the formation of runs, and the way to average values. Additionally, note that the 

maximum value of 1RP@n is 1/n as we shall see in the next section, mainly since 

each run has only one relevant item. Besides, in Section 4.4 we shall establish a for-

mal relation between both ways to compute precision. 

4.3.3 Preliminary Test 

In order to illustrate the effects of the different described alternatives, we show their 

results on three common collaborative filtering algorithms, based respectively on 

probabilistic Latent Semantic Analisys (pLSA) (Hofmann, 2004), matrix factorisation 

(MF) (Koren et al., 2009), and user-based nearest-neighbours (kNN) (Cremonesi 

et al., 2010). As additional baselines, we include recommendation by popularity and 

random recommendation. We use two datasets: the 1M version of MovieLens, and 
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an extract from Last.fm published by Ò. Celma (Celma and Herrera, 2008). Details 

about the implementation and datasets partition are provided in Appendix A.  

Figure 4.1 shows the P@10 results with AR and 1R configurations. For 1R we 

shall always use TI-NN, with      = 100. This is a significantly lower value than      

= 1,001 reported in (Cremonesi et al., 2010), but we have found it sufficient to en-

sure statistical significance (e.g. Wilcoxon    0.001 for all pairwise differences be-

tween the recommenders in Figure 4.1), at a considerably reduced execution cost. We 

adopt the TI policy in 1R to avoid biases that we shall describe later. In the AR con-

figuration we show TI-AN and AI-AN for MovieLens, though we shall generally 

stick to TI-AN in the rest of the chapter. In Last.fm we use only TI-NN and a tem-

poral split, with      = 2,500 for efficiency reasons, since     = 176,948 is consid-

erably large in this dataset. We set the positive relevance rating threshold to 5 in 

MovieLens, as in (Cremonesi et al., 2010), whereas in Last.fm, we take any number 

above 2 playcounts as a sign of positive preference. We have experimented with 

other thresholds for positive ratings, obtaining equivalent results to all the ones that 

are reported here – the only difference is discussed in Section 4.6. 

It can be seen that pLSA consistently performs best in most experimental con-

figurations, closely followed by popularity, which is the best approach in Last.fm 

with AR, and that MF is generally superior to kNN. Some aspects strike our atten-

tion. First, even though P@10 is supposed to measure the same thing in all cases, the 

range of the metric varies considerably across configurations and datasets, and even 

the comparison is not always consistent. For instance, in AR popularity ranges from 

0.08 on MovieLens to 0.35 on Last.fm; and AR vs. 1R produces some disagreeing 

comparisons on Last.fm. It may also be surprising that popularity, a non-personalised 

method, fares so well compared to other algorithms. This effect was already found 

recently in (Cremonesi et al., 2010) and (Steck, 2011). We also see that TI and AI 

produce almost the same results. This is because                 in MovieLens; 

differences become noticeable in configurations where              is significantly 

 

Figure 4.1. Precision of different recommendation algorithms on MovieLens 1M and 

Last.fm using AR and 1R configurations. 
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smaller than  , as we shall see in Section 4.6.2. As mentioned before, note that in this 

case, the upper bound of P@10 for the 1R methodology is 0.10. 

Some of this variability may reflect actual strengths and weaknesses of the algo-

rithms for different datasets, but we shall show that a significant part of the observed 

variations is due to statistical biases arising in the adaptation of the Cranfield meth-

odology to recommendation data, and are therefore meaningless with respect to the 

assessment of the recommenders‟ accuracy. Specifically, we have found that the met-

rics are strongly biased to test data sparsity and item popularity. We shall analyse this 

in detail in Sections 4.4 and 4.5, but before that we establish a relation between AR 

and 1R precision that will help in this analysis. 

4.3.4 Relation between AR and 1R 

We have seen that AR and 1R precisions produce in general quite different values, 

and we shall show they display different dependencies over certain factors. We find 

nonetheless a direct relation between the two metrics. Specifically, 1R precision is 

bound linearly by NN-AR precision, that is,               , as we show next. 

Lemma. Let us assume the irrelevant item sampling in 1R is done only once for all 

the test ratings of a user, that is, we select the same set of non-relevant items 

  
     in the   

  target sets. If we denote                 – in other words, 

      
 

  –, we have: 

 
       

      
        

     
           

        
 (4.2) 

with                 , where      is the NN-AR precision computed with 

the target sets     . 

Proof. Let   
  be the relevant item included in   

 , and let   
       denote the ranking 

position assigned to   by   for   within a set  , where    . Since   
    , we have 

that   
    

    
     

    
     . This means that if   

  is ranked above   in   , then it is 

also above   in its target set   
 . Hence       

    
               

         
    

     
                  . Summing on  , and dividing by   and        we prove 

the first inequality of Equation (4.2). 

On the other hand, it is easy to see that   
    

    
     

    
                

 . Thus, if   
  is ranked above   in   

 , then it is above                  in 

  . Thus       
    

               
         
         

                    

           . And the second inequality of Equation (4.2) follows again by sum-

ming on  , and dividing by   and       .  
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Note that the assumption   
     in the lemma is mild, inasmuch as the statis-

tical advantage in taking different   
  for each   is unclear. Even in that case,      

and            
          should be reasonably stable with respect to the ran-

dom sampling of   
 , and thus Equation (4.2) tends to hold. Figure 4.2 illustrates the 

relation between the AR bounds and the 1R values. The empiric observation suggests 

they provide similar while not fully redundant assessments. We also see that the 

bounding interval reduces progressively as      is increased (right), and even faster 

with test data sparsity (left) – in sum, the metric converges to its bounds as      

                        . 

4.3.5 Limitations of error-based metrics 

The analysis presented in (Bellogín et al., 2011a) leads to question again the suitability 

of error metrics. As in (McLaughlin and Herlocker, 2004), we found that there is no 

direct equivalence between results with error- and precision-based metrics. Common 

sense suggests that putting more relevant items in the top-N is more important for 

real recommendation effectiveness than being accurate with predicted rating values, 

which are usually not even shown to real users. Our study confirms that measured 

results differ between these two perspectives. An online experiment, where real us-

ers‟ feedback is contrasted to the theoretic measurements, may shed further light for 

an objective assessment and finer analysis of which methodology better captures user 

satisfaction. 

Furthermore, the use of error-based metrics may not be applicable depending on 

the dataset or the recommender evaluated. For instance, log-based datasets and 

probabilistic (e.g. pLSA) or popularity-based recommenders cannot be evaluated 

using error-based metrics because no real ratings are available in the first case, and in 

 

Figure 4.2. Empiric illustration of Equation (4.2). The curves show 1RP@10 and its bounds, 

for pLSA and kNN over MovieLens 1M. The light and dark shades mark the distance to the 

upper and lower bounds, respectively. The left side shows the evolution when progressively 

removing test ratings, and the right side displays the variation with      ranging from 100 to 

1,000. 
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the second case because such recommenders do not necessarily predict a rating, not 

even a score in the range of ratings (Cremonesi et al., 2010). 

The application of ranking-based metrics to recommendation, nonetheless, is far 

from being trivial. Firstly, there are obvious differences between the Cranfield para-

digm and a standard recommendation context, as described in Section 4.2. Secondly, 

the evaluation methodology may be sensitive to any statistical bias which may appear 

in the process. In the next sections we shall analyse two of these sources of bias: 

sparsity and popularity. 

4.4 Sparsity bias 

As mentioned earlier, we identify two strong biases in precision metrics when applied 

to recommendation. The first one is a sensitivity to the ratio of the test ratings vs. the 

added non-relevant items. We study this effect by an analysis of the expected preci-

sion for non-personalised and random recommendations in the AR and 1R settings. 

4.4.1 Expected Precision 

Let   
       be the item ranked at position   in the recommendation output for   

by a recommender system  , and let   be the ratio of test data in the training-test 

data split. In an AR setup the expected precision at   (over the sampling space of 

data splits with ratio  , the sampling of   , and any potential non-determinstic as-

pect of the recommender system – as e.g. in a random recommender) is: 

 

           
   

 
 

 
         

         

 

   

   

where            denotes the probability that item   is relevant for user  , i.e., the 

probability that            . Now we may write         
            

           
             

       , where we have        
            

        

        . On the other hand,            
             

                    

    
                       

      , since              in the AR methodol-

ogy. If   is a non-personalised recommender then   
   

 and   are mutually independ-

ent, and it can be seen that               
                     

    . All this 

gives: 
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where                  – if    have all the same size, then       . As all rele-

vant items for each user are included in her target set, we have         
     

           
         . If ratings are split at random into test and training, this is equal 

to        
        . Hence, we have: 

 

        
    

       
    

   
      

    

 

   

 (4.3) 

Now, if items were recommended at random, we would have        
        

      , and therefore: 

 

                    
    

     
     (4.4) 

where   is the average density of known relevance – which depends on how many 

preferences for items the users have conveyed, and the size of the target test item 

sets. 

On the other hand, in a 1R evaluation setup, we have: 

 

          
 

        
           

          
  

 

   

         

      

  

where   
        

  denotes the item ranked at position   in   
 . For random recom-

mendation, we have         
            

       
         since all target sets have 

the same size, whereby we have: 

 
                          (4.5) 

4.4.2 Test Sparsity Bias 

The above results for the expected random precision provide a formal insight on 

strong metric biases to characteristics of the data and the experimental configuration. 

In both Equations (4.4) for AR and (4.5) for 1R, we may express the expected ran-

dom precision as                   , where    is the ratio of positively 

rated items by   in    (or   
 , for that matter), and        , or      , depending 

on the experimental approach. In the AR approach the density  , and thus the   

ratio, are also inversely proportional to  . Precision in this methodology is therefore 

sensitive to (grows linearly with)   and   , and is inversely proportional to  , 

whereas 1R is only sensitive (inversely proportional) to  . The expected precision of 

random recommendation naturally provides a lower bound for any acceptable re-

commender. Note that in any configuration of AR and 1R, the total precision of any 

system is                    , since as all systems are required to return 
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(recommend) all items in the target sets    (or   
 ), that is, the total precision does 

not depend on the ranking. At lower cutoffs, we expect to have      

            . In other words, the lower bound – and so the expected range – for 

the     of recommender algorithms grows with the average ratio of relevant items 

per target item set. 

The   ratio – hence the random precision – thus depends on several aspects of 

the experimental setup (the experimental approach, the split ratio  , the number of 

non-relevant items in the target sets), and the test collection (the number of ratings, 

the number of users). Therefore, since   and the random precision can be adjusted 

arbitrarily by how the test sets are split, constructed, etc., we may conclude that the 

specific value of the metric has a use for comparative purposes, but has no 

particular meaning by itself, unless accompanied by the corresponding aver-

age relevance ratio   of the target test sets. This is naturally in high contrast to 

common IR datasets, where both the document collection and the relevance infor-

mation are fixed and not split or broken down into subsets. In fact, the metric values 

reported in the TREC campaigns have stayed within a roughly stable range over the 

years (Armstrong et al., 2009a; Armstrong et al., 2009b). Note also that the sparsity 

bias we analyse here is different from the impact of training data sparsity in the per-

formance of collaborative filtering systems. What we describe is a statistical bias 

caused by the sparsity of test data (as a function of overall data sparsity and/or test 

data sampling), and its effect does not reflect any actual variation whatsoever in the 

true recommendation accuracy. 

The sparsity bias explains the precision range variations observed earlier in Fig-

ure 4.1. The empirically obtained values of random precision match quite exactly the 

 

Figure 4.3. Evolution of the precision of different recommendation algorithms on 

MovieLens 1M, for different degrees of test sparsity. The x axis of the left and center 

graphics shows different amounts of removed test ratings. The x axis in the right graphic is 

the size of the target item sets. 
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theoretically expected ones. To what extent the random recommendation analysis 

generalises to other algorithms can be further analysed empirically. Figure 4.3 illus-

trates the bias trends over rating density and target set size, using the experimental 

setup of Section 4.3.3 (with TI-AN in AR, and TI-NN in 1R). We show only the 

results in MovieLens – they display a similar effect on Last.fm. In the left and center 

graphics, we simulate test sparsity by removing test ratings. In the right graphic we 

vary        in a 1R configuration. We observe that the empirical trends confirm 

the theoretical analysis: precision decreases linearly with density in the AR methodol-

ogy (left graphic, confirming a linear dependence on  ), whereas precision is inde-

pendent from the amount of test ratings in the 1R approach (center), and shows in-

verse proportionality to t (right). It can furthermore be seen that the biased behavior 

analytically described for random recommendation is very similarly displayed by the 

other recommenders (only differing in linear constants). This would confirm the 

explanatory power of the statistical trend analysis of random recommendation, as a 

good reference for similar biases in other recommenders. On the other hand, even 

though the precision values change drastically in magnitude, it would seem that the 

comparison between recommenders is not distorted by test sparsity. We find other 

biases in precision measurements, however, which do affect the comparison of re-

commenders, as we study in the next section. 

4.5 Popularity bias 

Sparsity is not the only bias the metric measurements are affected by. The high ob-

served values for a non-personalised method such as recommendation by popularity 

raise the question of whether this really reflects a virtue of the recommender, or 

some other bias in the metric. We seek to shed some light on the question by a closer 

study. 

4.5.1 Popularity-Driven Recommendation 

Even though they contradict the personalisation principle, the good results of popu-

larity recommendation can be given an intuitive explanation. By averaging over all 

users, precision metrics measure the overall satisfaction of the user population. A 

method that gets to satisfy a majority of users is very likely to perform well under 

such metrics. In other words, average precision metrics tend to favour the satisfac-

tion of majorities, regardless of the dissatisfaction of minorities, whereby algorithms 

that target majority tastes will expectably yield good results on such metrics. This 

implicitly relies on the fact that on a random item split, the number of test ratings for 

an item correlates with its number of training ratings, and its number of positive rat-

ings correlates with the total number of ratings. More formally, the advantage of 
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popularity-oriented recommendation comes from the fact that in a random rating 

split,                                           , which means that the items 

with many training ratings will tend to have many positive test ratings, that is, they 

will be liked by many users according to the test data. We analyse this next, more 

formally and in more detail. 

In a popularity recommender   
     

 is the  -th item in the target set with most 

ratings in the training set – i.e., the system ranks items by decreasing order of 

         
      . This ranking is almost user-independent (except for those, statistically 

negligible, user items already in training which are excluded from the ranking) and 

therefore, for an AR experimental design, Equation (4.3) applies. Since we have 

      
       

              
     

    (as far as                        for a 

random training-test split), the popularity recommendation is the best possible non-

personalised system, maximising        . Popularity thus achieves a considerably 

high precision value, just for statistical reasons. 

For a 1R experimental design, using Equation (4.2) (lemma) we have: 

          

      
           

       
          

        
 

Now, since      and   
     above are computed by AR, we may elaborate from 

Equation (4.3) for a non-personalised recommender, and we get: 

   

      
    
   

      
    

 

   

           
   

      
    
   

      
    

  

   

 

This experimental approach is thus equally biased to popular items, since the latter 

optimise       
     

   . 

Note that the advantage of popularity over other recommenders is highly de-

pendent on the skewness in the distribution of ratings over items: if all items were 

equally popular, the popularity recommender would degrade to random recommen-

dation – in fact slightly worse, as                                   , so popu-

lar items would have fewer positive test ratings. On the other extreme, if a few items 

(less than  ) are liked by most users, and the rest are liked by very few, then popular-

ity approaches the maximum precision possible. 

4.5.2 Popularity Distributions 

In order to illustrate how the dependence between the popularity precision and the 

background popularity distribution evolves, we simulate different degrees of skewness 

in rating distributions. As a simulated distribution pattern we use a shifted power law 

                  , where   determines the skewness (e.g.     1.4 for 

MovieLens 1M). Figure 4.4 (left) shows the shape of generated distributions ranging 
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from uniform (  = 0) to a very steep long-tailed popularity distribution (  = 2), and 

(center) how the measured precision evolves in this range. The artificial data are cre-

ated with the same number of users, items, and ratings (therefore the same rating den-

sity) as in MovieLens 1M, setting    and    by a fit to this dataset, and enforcing these 

constraints by adjusting  . The rating values are assigned randomly on a 1-5 scale, also 

based on the prior distribution of rating values in Movie-Lens. 

The results in Figure 4.4 (center) evidence the fact that the precision of popular-

ity-based recommendation is heavily determined by the skewness of the distribution. 

It benefits from steep distributions, and degrades to slightly below random (0.0077 

vs. 0.0100) when popularity is uniform. This slightly below-random performance of 

popularity recommendation at   = 0 is explained by the fact that              

                              is inverse to the popularity ranking by           

when      is uniform, as predicted at the end of the previous section. kNN and MF 

stay essentially around random recommendation. This is because the data are devoid 

of any consistent preference pattern (as collaborative filtering techniques would as-

sume) in this experiment, since the ratings are artificially assigned at random, and the 

results just show the “pure” statistical dependency to the popularity distribution. 

pLSA does seem to take advantage of item popularity, as it closely matches the effec-

tiveness of popularity recommendation. We show only the 1R design, but the effect 

is the same in AR. 

This observation also explains the difference between datasets from IR and 

those from recommendation with regards to the popularity bias. Figure 4.4 (right) 

shows the cumulative distribution of positive user interaction data per item in three 

 

Figure 4.4. Effect of popularity distribution skewness on the popularity bias. The left 

graphic shows the cumulated popularity distribution of artificial datasets with simulated 

ratings, with skewness ranging from   = 0 to 2. The x axis represents items by popularity 

rank, and the y axis displays the cumulative ratio of ratings. The central graphic shows the 

precision of different recommendation algorithms on each of these simulated datasets. The 

right graphic shows the cumulative distribution of positive ratings in real datasets. 
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datasets: Netflix, MovieLens, and Last.fm (the dataset in Section 4.3.3). The shapes 

of the curves are typical of long-tailed distributions, where a few popular items ac-

cumulate most of the preference data (Celma, 2010; Celma and Cano, 2008). This 

contrasts with the distribution of positive relevance judgments over documents in 

TREC data (same figure) – where we have aggregated 30 individual tracks, filtering 

out the documents that are not relevant to any query, and obtaining a set of 703 que-

ries, 129,277 documents, and 149,811 positive judgments. The TREC distribution is 

considerably flatter, not far from uniform: 87.2% of documents are relevant to just 

one query, and the maximum number of positive assessments per document is 25 

(3.6% of queries), whereas the top popular item in Netflix, MovieLens, and Last.fm, 

is liked by 20.1%, 32.7% and 73% of users, respectively. 

Several reasons account for this difference between retrieval and recommender 

datasets. First, in IR queries are selected by design, intending to provide a somewhat 

varied testbed to compare retrieval systems. Hence, including similar queries with 

overlapping relevance would not make much sense. Second, queries in natural search 

scenarios are generally more specific and narrower than global user tastes for rec-

ommendation, whereby the corresponding relevant sets have much less intersection. 

Furthermore, the TREC statistics we report are obtained by aggregating the data of 

many tracks, in order to seek any perceptible popularity slant. The typical TREC ex-

periments are actually run on separate tracks comprising typically 50 queries, where 

very few documents, if any, are relevant to more than one query. Note also that even 

though we have filtered out over 0.7 million non-relevant plus nearly 5 million unla-

beled documents in the TREC statistics, the non-relevant documents actually remain 

as input to the systems, contrarily to experiments in the recommender domain, thus 

making up an even flatter relevance distribution. Moreover, in the usual IR evalua-

tion setting, the systems have no access to the relevance data – thus, they have no 

means to take a direct bias towards documents with many judgments –, whereas in 

recommendation, this is the primary input the systems (particularly collaborative fil-

tering recommenders) build upon. The popularity phenomenon has therefore never 

been an issue in IR evaluation, and neither the metrics nor the methodologies have 

had to even consider this problem, which arises now when bringing them to the rec-

ommendation setting – where the overlap between user preferences is not only 

common, but actually needed by collaborative filtering algorithms. 

4.6 Overcoming the popularity bias 

After analysing the effects of popularity in precision metrics, the issue remains: to 

what extent do the good results of popularity recommendation reflect only a statisti-

cal bias in a metric, or any degree of actual recommendation quality? The same ques-

tion should be raised for pLSA, which seems to follow the popularity trends quite 
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closely. We address the question by proposing and examining alternative experimen-

tal configurations, where the statistical role of popularity gets reduced, as we propose 

next. 

4.6.1 Percentile-Based Approach (P1R) 

We propose a first approach to neutralise the popularity bias, which consists in parti-

tioning the set of items into   popularity percentiles     , breaking down the 

computation of accuracy by such percentiles, and averaging the   obtained values. 

By doing so, in a common long-tailed popularity distribution, the margin for the 

popularity bias is considerably reduced, as the difference    in the number of posi-

tive test ratings per item between the most and least popular items of each percentile 

is not that high. The popularity recommender is forced to recommend as many un-

popular as popular items, thus leveling the statistical advantage to a significant extent. 

It remains the optimal non-personalised algorithm, but the difference – and thus the 

bias – is considerably reduced. The technique is illustrated in Figure 4.5a. 

A limitation of this approach is that it restricts the size of the target sets by 

          . For instance, for   = 10 in MovieLens 1M, this imposes a limit of 

       370, which seems acceptable for 1R. The restriction can be more limiting in 

the AR approach, e.g. the TI and AI options cannot be applied (except within the 

percentiles). For this reason, we will only apply the percentile technique in the 1R 

design, a configuration to which we shall refer as P1R. 

 

 

Figure 4.5. Rating splits by a) a popularity percentile partition (left), and b) a uniform 

number of test ratings per item (right). On the left, the red dashed split curve represents 

             – i.e., the random split ratio needs not be applied on a per-item basis – whereas 

on the right it does represent          . 
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4.6.2 Uniform Test Item Profiles (UAR, U1R) 

We now propose a second technique consisting of the formation of data splits where 

all items have the same amount of test ratings. The assumption is that the items with 

a high number of training ratings will no longer have a statistical advantage by having 

more positive test ratings. That is, the relation                        described in 

Section 4.5.1 breaks up. The approach consists of splitting the data by picking a set   

of candidate items, and a number   of test ratings per item so that         . For 

this to be possible, it is necessary that                  , where   is a mini-

mum ratio of training ratings per item we consider appropriate. In particular, in order 

to allow for  -fold cross-validation, we should have      . The selection of   can 

be done in several ways. We propose to do so in a way that it maximises    , i.e., to 

use as many different target test items as possible, avoiding a biased selection to-

wards popular items. If we sort      by popularity rank, it can be seen that this is 

achieved by picking              with   

                         , so that              . Figure 4.5b illustrates 

this procedure. 

The expected effect of this approach is that the statistical relation              

      no longer holds, and neither should hold now, as a consequence, the rationale 

described in Section 4.5.1 for popularity being the optimum non-personalised re-

commender. In fact, since                           for any    , and 

         , it can be seen that if     (TI policy) Equation (4.3) for AR yields: 

        
   

      
    

   
 
     

    

    
    

 

   

 

for any non-personalised recommender. If the ratio      
        

      of positive 

ratings does not depend on  , we have                      . This means 

that popularity recommendation may get some advantage over other recommenders 

only if – and to the extent that – popular items have a higher ratio of positive ratings 

than unpopular items, and popularity recommendation will degrade to random preci-

sion otherwise. On the other hand, it can be seen that if     (i.e., the TI policy is 

not adhered to), then           would get reduced by a factor of        .  

For a non-personalised recommender in a 1R design, elaborating from Equa-

tions (4.2) and (4.3) we get: 
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an equivalent situation where the measured precision of popularity recommendation 

is bound by the potential dependence between the ratio of positive ratings and popu-

larity. 

Figure 4.6 shows this ratio as            with respect to the item popularity 

rank in MovieLens 1M. It can be seen that indeed the ratio grows with popularity in 

this dataset, which does lend an advantage for popularity recommendation. Even so, 

we may expect the bias to be moderate – but this has to be tested empirically, as it 

depends on the dataset. Note also that in applications where all ratings are positive 

(as e.g. in our Last.fm setup), popularity – and any non-personalised recommender – 

would drop exactly to random precision (            in AR and     in 1R).  

A limitation of this approach is that the formation of   may impose limits on the 

value of  , and/or the size of  . If the popularity distribution is very steep,   may 

turn out small and therefore biased to a few popular items. Moreover, there is in gen-

eral a solution for   only up to some value of   – it is easy to see (formally, or just 

visually in Figure 4.5) that as     there is no item for which                 

 , unless the popularity distribution was uniform, which is never the case in practice. 

We have however not found these limitations to be problematic in practice, and 

common configurations turn out to be feasible without particular difficulty. For in-

stance, in MovieLens 1M we get     = 1,703 for    0.2 with   = 0.2 (allowing for a 

5-fold cross-validation), resulting in   = 118 test ratings per item.  

This method can be used, as noted, in both the AR and 1R approaches. We shall 

refer to these combinations as UAR and U1R respectively, where „U‟ stands for the 

“uniform” number of item test ratings. In U1R it is important to set     in order 

to sample non-relevant items within   (i.e.,     , for the TI policy). Otherwise, 

popularity would have a statistical advantage over other recommenders, as it would 

systematically rank irrelevant items in      below any relevant item in  , whereas 

 

Figure 4.6. Positive ratings ratio vs. popularity rank in MovieLens 1M. The graphic plots 

          , where items are ordered by decreasing popularity. We display averaged values 

for 100 popularity segments, for a smoothed trend view. 
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other algorithms might not. The same can be considered in UAR, unless the experi-

mental setup requires         , as e.g. in the AI design. In that case a slight popu-

larity bias would arise, as we shall see next. 

4.6.3 Experimental Results 

Figure 4.7 compares the results measured by 1R, AR and their corresponding popu-

larity-neutralising variants. The setup is the same as in previous sections, except that 

for AR, we take TI-NN with      = 1,700, to level with UAR in random precision. 

All the results correspond to MovieLens 1M except Last.fm where indicated. It can 

be seen that P1R, U1R and UAR effectively limit the popularity bias. The techniques 

seem to be more effective on 1R than AR: U1R and (even more) P1R actually place 

the popularity algorithm by the level of random recommendation, whereas the meas-

ured popularity precision decreases in UAR, but remains above kNN. The advantage 

of popularity over randomness in U1R and P1R is explained by the bias in the ratio 

of positive ratings in popular items (Figure 4.6). This ratio is constant in Last.fm, 

whereby popularity drops to random in U1R, as predicted by our analysis in the pre-

vious section, proving that the popularity bias remaining in the uniform-test ap-

proach is caused by this factor. This residual bias is higher in U1R than P1R, because 

in the former,    is sampled over a larger popularity interval (    = 1,703 vs.     / 

10 = 370 items), giving a higher range for advantage by popularity, which also ex-

plains why the latter still overcomes kNN in UAR. We may observe the importance 

of using the TI policy in UAR, without which (in AI-UAR) a higher bias remains. We 

also show the effect of removing the 10% most popular head items from the test 

data (and also from  , i.e., they are excluded from    sampling) in 1R, as a simple 

strategy to reduce the popularity bias (Cremonesi et al., 2010). We see that this tech-

nique reduces the measured precision of popularity, but it is not quite as effective as 

the proposed approaches. 

It is finally worth emphasising how the percentile and uniform-test ap-

proaches discriminate between pure popularity-based recommendation and 

an algorithm like pLSA, which does seem to take popularity as one of its signals, 

but not the only one. The proposed approaches allow uncovering the difference, 

neutralising popularity but not pLSA, which remains the best algorithm in all con-

figurations. 

As we mentioned in Section 4.3, we have taken precision as a simple and com-

mon metric for our study, but all the presented analysis and proposed alternatives 

straightforwardly generalise to other standard IR metrics, such as MAP, nDCG, and 

Mean Reciprocal Rank (MRR). Their application is direct in the AR setting; and they 

can be applied in 1R by simply introducing them in place of precision in the internal 

summation of Equation (4.1). Figure 4.7 shows results for nDCG, where we see that 

the analysed patterns hold just the same. The AR approach provides room for a 
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slightly wider metric variety than 1R, in the sense that some metrics reduce to each 

other in 1R. For instance, for a single relevant item, MAP is equivalent to Mean Re-

ciprocal Rank (        where   is the rank of the first relevant item). And 

nDCG is insensitive to relevance grades in 1R (the grade of the single relevant item 

cancels out), whereas grades do make a difference in AR. 

4.7 Conclusions 

The application of Information Retrieval methodologies to the evaluation of recom-

mender systems is not necessarily as straightforward as it may seem. Hence, it de-

serves close analysis and attention to the differences in the experimental conditions, 

and their implications on the explicit and implicit principles and assumptions on 

which the metrics build. We have proposed a systematic characterisation of design 

alternatives in the adaptation of the Cranfield paradigm to recommendation tasks, 

aiming to contribute to the convergence of evaluation approaches. We have identi-

fied assumptions and conditions underlying the Cranfield paradigm which are not 

granted in usual recommendation experiments. We have detected and examined re-

sulting statistical biases, namely test sparsity and item popularity, which do not arise 

in common test collections from IR, but do interfere in recommendation experi-

 

 

Figure 4.7. Precision and nDCG of recommendation algorithms on MovieLens 1M (and 

Last.fm only where indicated) using the 1R, U1R, P1R (  = 10 percentiles), AR, and UAR 

methodologies. The “-10% head” bars show the effect of removing the 10% most popular 

items from the test data (Cremonesi et al., 2010). 
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ments. Sparsity is clearly a noisy variable that is meaningless with respect to the value 

of a recommendation. Whether popularity is in the same case is less obvious; we 

propose experimental approaches that neutralise this bias, leaving way to an unbiased 

observation of recommendation accuracy, isolated from this factor. With a view to 

their practical application, we have identified and described the pros and cons of the 

array of configuration alternatives and variants analysed in this study. 

In general, we have found that evaluation metrics computed in AR and 1R ap-

proaches differ in how they are averaged. This means, more specifically, that precision 

obtained by approaches following a 1R design is bound linearly by precision of AR 

approaches. Moreover, we have observed that a percentile-based evaluation considera-

bly reduces the margin for the popularity bias, although the main limitation of this ap-

proach is that it specifies a constraint on the size of the possible target sets. Addition-

ally, a uniform-test approach removes any statistical advantage provided by having 

more positive test ratings. Furthermore, we have found that both approaches discrimi-

nate between pure popularity-based recommendation and an algorithm like pLSA. 

The main goal of our research addresses a second-order problem: we aim to pre-

dict the accuracy of the predictions of recommendation algorithms. As we shall see, 

the (second-order) evaluation of our researched methods relies on the (first-order) 

evaluation metrics and methodologies by which the recommendation algorithms‟ 

accuracy is measured. In order to consistently evaluate our methods, the primary 

recommendation evaluation has to be reliable and well-understood. Any bias in the 

process would lead to inconclusive or misleading results about the predictive power 

of our methods. For this reason, the results presented in this chapter are a necessity 

for the main goal of this thesis, but the outcome can be of more general use. Specifi-

cally, in the following chapters we shall compare how the different methodologies 

(with and without neutralised biases) may impact the observations on the predictive 

power of our predictors. 

The popularity effects in recommender systems have started to be reported in 

recent work (Cremonesi et al., 2011; Cremonesi et al., 2010; Steck, 2011). Our re-

search complements such findings by seeking principled theoretical and empirical 

explanations for the biases, and providing solutions within the frame of IR evaluation 

metrics and methodology – complementarily to the potential definition of new spe-

cial-purpose metrics (Steck, 2011). The extent to which popularity is a noisy signal 

may be further analysed by developing more complete metric schemes incorporating 

gain and cost dimensions, where popular items would expectably score lower. Such 

metrics may e.g. account for the benefits (to both recommendation consumers and 

providers) drawn from novel items in typical situations (Vargas and Castells, 2011), 

as a complement to plain accuracy. Online tests with real users should also be valu-

able for a comparative assessment of offline observations, and the validation of ex-

perimental alternatives. 
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